The local discontinuous Galerkin finite element method for Burger's equation
نویسندگان
چکیده
In this paper, we study the local discontinuous Galerkin (LDG) finite element method for solving a nonlinear Burger’s equation with Dirichlet boundary conditions. Based on the Hopf–Cole transformation, we transform the original problem into a linear heat equation with Neumann boundary conditions. The heat equation is then solved by the LDG finite element method with special chosen numerical flux. Theoretical analysis shows that this method is stable and the (k+1)th order of convergence rate when the polynomialsP k are used. Finally,we present some examples ofP k polynomialswith 1 ≤ k ≤ 4 to demonstrate the high-order accuracy of this method. The numerical results are also shown to be more accurate than some available results given in the literature. © 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملNumerical Simulation for Porous Medium Equation by Local Discontinuous Galerkin Finite Element Method
In this paper we will consider the simulation of the local discontinuous Galerkin (LDG) finite element method for the porous medium equation (PME), where we present an additional nonnegativity preserving limiter to satisfy the physical nature of the PME. We also prove for the discontinuous P0 finite element that the average in each cell of the LDG solution for the PME maintains nonnegativity if...
متن کاملMinimal Stabilization for Discontinuous Galerkin Finite Element Methods for Hyperbolic Problems
We consider a discontinuous Galerkin finite element method for the advection–reaction equation in two space–dimensions. For polynomial approximation spaces of degree greater than or equal to two on triangles we propose a method where stability is obtained by a penalization of only the upper portion of the polynomial spectrum of the jump of the solution over element edges. We prove stability in ...
متن کاملLocal Discontinuous Galerkin Method for Diffusion Equations with Reduced Stabilization
We extend the results on minimal stabilization of Burman and Stamm (”Minimal stabilization of discontinuous Galerkin finite element methods for hyperbolic problems”, J. Sci. Comp., DOI: 10.1007/s10915-007-9149-5) to the case of the local discontinuous Galerkin methods on mixed form. The penalization term on the faces is relaxed to act only on a part of the polynomial spectrum. Stability in the ...
متن کاملThe WKB Local Discontinuous Galerkin Method for the Simulation of Schrödinger Equation in a Resonant Tunneling Diode
In this paper, we develop a multiscale local discontinuous Galerkin (LDG) method to simulate the one-dimensional stationary Schrödinger-Poisson problem. The stationary Schrödinger equation is discretized by the WKB local discontinuous Galerkin (WKB-LDG) method, and the Poisson potential equation is discretized by the minimal dissipation LDG (MD-LDG) method. The WKB-LDG method we propose provide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematical and Computer Modelling
دوره 54 شماره
صفحات -
تاریخ انتشار 2011